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Many-Body Effects in Diffusion-Limited Kinetics 

A. M. Berezhkovskii ,  1 Yu. A. Makhnovski i ,  z and R. A. Suris ~ 

We review a novel approach to treating many-body effects in diffusion-limited 
kinetics. The derivation of the general expression for the survival probability of 
a Brownian particle in the presence of randomly distributed traps is given. The 
reduction of this expression to both the Smoluchowski solultion and the well- 
known asymptotic behavior is demonstrated. It is shown that the Smoluchowski 
solution gives a lower bound for the particle survival probability. The correction 
to the Smoluchowski solution which takes into account the particle death 
slowdown in the initial process stage is described. The steady-state rate-constant 
concentration dependence and the reflection of many-body effects in it are 
discussed in detail. 
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1. I N T R O D U C T I O N  

The idea of Brownian particles trapped by randomly distributed ideal traps 
is widely used in theoretical models of different physical and chemical 
processes, exemplified by diffusion-influenced fluorescence quenching, diffu- 
sion-controlled chemical reactions, and so on. All these processes have a 
common feature, viz., the kinetic behavior is determined by the rate at 
which reactans approach one another. The rate at which such an approach 
is made is described in terms of Brownian motion. This is why such 
processes are termed diffusion-limited processes. 

In this paper we discuss the kinetics of Brownian particle death due to 
reaction with static traps. Smoluchowski was the first to consider this 
problem in his colloid coagulation theory. (1) The characteristic feature of 
the Smoluchowski theory is that it is based on the one-body approxima- 
tion. The mutual influence of all traps on particle death on each of 
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them, the so-called competition between the traps, ~2~ is neglected in this 
approximation. As a result, the difficult many-body problem is reduced to 
the simpler problem of particle death on a single trap. However, it is the 
competition between traps which is the origin of a number of many-body 
effects in the diffusion-limited kinetics. 

Numerous attempts have been made to improve the Smoluchowski 
theory in different directions. For  example, investigators have tried to 
incorporate many-body effects into the theory. Because there are so many 
papers on the subject, we cite the references to be found in some recent 
monographs and review articles/2 9) 

The present review paper is devoted to a novel approach to the 
analysis of many-body effects in diffusion-limited kinetics that have been 
suggested in our recent papers. r We also discuss in detail some 
methodological questions related to the derivation of the Smoluchowski 
solution, the steady-state rate constant, and its dependence on trap 
concentration. Such a discussion seems useful, since some of these rather 
important questions have not been consider in detail in the literature. 

2. T H E  S M O L U C H O W S K I  T H E O R Y  

One of the basic assumptions in the Smoluchowski theory is the 
one-body approximation. It allows one to reduce a difficult many-body 
problem to the problem of particle death on a single trap. This approxima- 
tion enables us to solve a wider range of problems than just the problem 
of particle death in the presence of a finite concentration of static traps. 
The simplification due to Smoluchowski allows us to analyze the particle 
death problem in the case in which both the particle and traps can have 
different diffusion constants, by using the relative diffusion coefficient 

D = Dp + Dtr (2.1) 

where Op and Otr are  the diffusion coefficients describing the motion of 
particles and traps, respectively. 

We assume that the particle death takes place at the first contact 
between a particle and a trap, i.e., when a particle approaches within a dis- 
tance b of the trap. We suppose that the trap concentration is uniform and 
equal to Co. In the Smoluchowski theory the parameter of major interest is 
the rate coefficient, which generally depends on time. This rate coefficient 
is identified with the flux of traps at time t into an absorbing sphere of 
radius b. The expression for this flux in d dimensions is 

2pd/2Dba-~I~3 1 
ksm(t)  - F(d/2) ~r c(r, t) r=b (2.2) 
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where c(r, t) is the concentration of diffusing traps at r at time t. The 
concentration c(r, t) is determined as the solution to a diffusion equation 

~C 
- - = D  Ac (2.3) 
c~t 

subject to the initial condition c(r, 0)--c  0 for r>b, and an absorbing 
boundary condition at the sphere surface. 

At this point we derive the Smoluchowski solution, using an analysis 
given by Tachiya. (14) The object of our calculations is to find the 
probability of particle survival during the time interval t, P(t). This 
probability is obtained in terms of the analogous survival probability for a 
fixed initial trap configuration P~(t), where ~ is an index which corresponds 
to a particular trap configuration. After one calculates this survival 
probability, the overall survival probability P(t) is found by averaging over 
all trap configurations. Assuming that both the contacts between particles 
and traps and the diffusive motion of the particles are independent, we can 
write the survival probability P~.sm(t) as a product of independent 
probabilities 

P~,Sm(t) = [ I  p(tlRj.=) (2.4) 
j--1 

In this equation Rj.~ is the initial position of the j th  trap in configuration 
:~, and p(tl ~) is the survival probability in the presence of a single trap 
initially at R. 

To calculate the survival probability p(tl R), it is necessary to solve 
the one-body problem by finding the Green's function G(r, tJR) which 
satisfies the diffusion equation (2.3) subject to the same initial and 
boundary conditions. Without loss of generality we solve this problem for 
an immobile particle whose center is at the origin, and a movable trap 
whose motion is characterized by the diffusion coefficient in Eq. (2.1). The 
Green's function is the probability density of finding the trap at point r at 
time t, given that is was initially at R, and that it has not been trapped by 
time t. The survival probability p( t IR)  is then given by 

p( t lR)=fG(r ,  tJ R) ddr (2.5) 

To obtain the final expression for the survival probability P(t), 
Eq. (2.4) should be averaged over the initial trap configurations. The 
Smoluchowski theory is based on the assumption that the mobile particles 
are uniformly distributed throughout space. To average over configura- 
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tions, we introduce the auxiliary volume s containing N traps, and pass to 
the limit N, D ~ oe, N/s = c o. Thus, we have 

Ps i ( t )  = (P~ , sm( / ) )  

1 f u - lim O N l - I  p(tlRj,=) daRj,= (2.6) 
N , s  ~ ~ , N / ~  = c 0 j : 1 

Now let us introduce the probability that the particle is trapped sometime 
during the time interval (0, t). This will be denoted by q(tlR) related 
to the survival probability by q( t JR)=  1 - p ( t l R ) .  Introduction of this 
probability allows us to express the survival probability Psm(t) as 

Psm(t) = lim 1 - ~  q(tlR)daR 
N ,  g2 ~ c ~ , N / s  : c o 

=exp [-co  f q(tlR) ddR] (2.7) 

To confirm the fact that this expression is really equivalent to the 
Smoluchowski solution, we calculate the rate coefficient from it, 

1 dPsm(t  ) c~q(t I R) 
ksm(t)= Psm(t) dt Co I daR (2.8) -77 

The derivative Oq(tlR)/c?t is the flux into the sphere at time t that comes 
from a diffusing trap initially at R. The right-hand side of Eq. (2.8) gives 
the sum of all such contributions. It expresses the total flux into the 
absorbing sphere at time t when the initial concentration of traps is 
uniform and equal to Co. Thus, the rate coefficient in Eq. (2.8) is equal to 
that in Eq. (2.2), and Eq. (2.7) gives the survival probability as calculated 
in the framework of the Smoluchowski theory. 

Let us enumerate once more the main assumptions used in the deriva- 
tion of Eq. (2.8): (a). A reduction of the initial problem to a pair problem, 
i.e., the single-body approximation, and (b) an initially uniform distribu- 
tion of traps. It should be emphasized that these assumptions, which allow 
us to treat the general case when both particles and traps are mobile, is 
possible only within the framework of a single-body approximation in 
which Eq. (2.1) is satisfied. We may expect different kinetic behavior when 
either assumption is violated. In this paper we consider the deviations that 
arise due to a violation of the first assumption, i.e., when many-body effects 
are taken into account. 
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3. A N E W  A P P R O A C H  

Equation (2.1) links two limiting cases, viz., the case of static traps 
and a diffusing particle (Dtr=0, Dp=D :~0) and the case of moveable 
traps in the presence of an immobile particle (Dt r=D 50 ,  Dp---0). It 
should be noted that the single-body solution in Eq. (2.4) is an accurate 
one in the second case (provided the diffusing traps do not interact) and 
incorrect in the first. The survival probability of a diffusing particle in the 
presence of a fixed configuration of static traps P~(t) is expressed in terms 
of the Green's function G~(r, t) by an equation of the form of Eq. (2.5). The 
Green's function G~(r, t) is found by solving the diffusion equation with 
absorbing boundary conditions at every trap surface and the initial condi- 
tion G~(r, 0 )=d( r )  (without loss of generality we may suppose that a 
particle starts from the origin). It is also possible to recast the mathe- 
matical formalism by introducing the effects of the traps into the diffusion 
equation in the form of a hard-core potential at radius b. The emended 
version of the diffusion equation then takes the form 

where 

0G~ 
at =D A G~-  ~ U(Ir-aj,~l)a~ (3.1) 

j = l  

U(r) = foo for r<b 
(3.2) lo for r > b 

It is evident that the factorization in Eq. (2.4) can only be valid in the 
absence of many-body effects.(1~ 11,14.15~ 

Finding a solution to Eq. (3.1) clearly poses an extremely difficult 
problem. This is why a direct method of evaluating the survival probability 
P(t) based on an intermediate calculation of the survival probability for all 
fixed configurations and a subsequent averaging over all trap configura- 
tions is to be avoided. An alternative approach requires performing a 
formal average of survival probabilities over all configurations, i.e., 

P ( t ) =  ( P ~ ( t ) ) = f  (G~(r, t ) )ddr  (3.3) 

Different approximate methods have been used for calculating the average 
(G,(r,  t)).  Such techniques include the optimal-fluctuation method, the 
effective medium theory, and a modified perturbation theory. (16'17) 

The optimal-fluctuation method has been used to find the asymptotic 
behavior of the survival probability P(t). It has been shown that at t --, oo 
the particles perish at a considerably slower rate than predicted by the 



1030 Berezhkovskii e t  al. 

Smoluchowski theory (18 22) (the so-called particle death fluctuation slow- 
down effect). We shall discuss this effect in more detail below. Progress is 
considerably more modest in refining approximations to the behavior of 
the survival probability P(t). Moreover, several authors have come to the 
incorrect conclusion that particles perish faster than predicted by the 
Smoluchowski theory. The error in this assertion will become clear from 
our later analysis. 

Our new approach to the calculation of the survival probability P(t) 
takes into account some specific features of the problem under study. The 
point is that the problem of the Brownian point particle death on spherical 
traps of radius b is equivalent to the problem of the diffusion of a spherical 
Brownian particle (of radius b) which is removed from the system when it 
comes into contact with a point trap. If such a particle visits a region of 
volume v in a space without traps, then its survival probability, in the case 
when the particle moves along the same Wiener trajectory in a space with 
point traps, equals the probability that there are no traps in the volume. 
Because the number of traps in any volume has a Poisson distribution, the 
probability that there are no traps in a volume v is equal to exp(-coV). 
The volume v visited by the Brownian particle in a space without traps is 
a random variable. Let us introduce its probability density F,(v), which 
characterizes the distribution of v at time t. This density satisfies the 
normalization condition 

f F,(v) dv = 1 (3.4) 

Therefore we may express the survival probability as 

P(t) = f exp( -Co v) F,(v) dv (3.5) 

Equation (3.5) for the survival probability is the key formula in our 
approach. We will now derive it from the general expression in (3.3). To do 
this we use the Kac-Feynman formula and express the Green's function 
G~(r, t) as a sum over the Wiener trajectories r(t ')  ( 0 < t ' < t )  for which 
r(0) = 0 and r(t) = r ,  (23'24) 

G~(r, t ) = j  exp - U(Ir(t')-Rj,~t)dt' Dr(t ' )  
(o,o) j =  1 

(3.6) 

From the definition of the potential U(r) in Eq. (3.2), it follows that in 
Eq. (3.6) the contribution of a trajectory is equal to zero if the trajectory 
passes within a distance b of a trap center and equals unity if it does not. 
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Averaging Eq. (3.6) over all trap configurations, we obtain 

(G~(r, t ) ) =  ;((~ii )) t exp  { -  fOj~l U(lr(t')--Rj,~l)dt'})Dr(t') (3.7) 

The contribution from different trajectories to the integral (3.7) is equal to 
the fraction of such trap configuration in which the b vicinity of the trajec- 
tory is free from traps. Because of the Poisson distribution of traps, this 
fraction is equal to exp{-Cov([r( t ' ) ] )},  where v( [ r ( t ' ) ] ) i s  the volume of 
the b vicinity of trajectory r(t'), and the square brackets indicate that the 
volume v is a functional of the Wiener trajectory r(t'). Thus, we obtain 

[('ir) exp{-cov([r(t ')])} D r ( f )  (3.8) (G~(r, t ) )  = ~(o o) 

The integration of the Green's function in Eq. (3.8) over r in Eq. (3.3) 
is equivalent to the sum over all termination points of the trajectory. Thus, 
we are able to express the survival probability P(t) as a sum over all 
Wiener trajectories whose starting point is at the origin. Denoting such a 
sum by angular brackets ( . . . ) , ,  we can write 

P(t) = (exp{ -CoV([r(t')])} )t (3.9) 

To pass from Eq. (3.9) to Eq. (3.5), one need only introduce a formal 
definition of the probability density Ft(v), which has the form 

F,(v) =- (d(v - v([r(t ' )])  ),  (3.10) 

In this way we confirm the validity of Eq. (3.5), which was proposed earlier 
on the basis of a heuristic argument. 

Equations (3.5) and (3.9) for the survival probability are the main 
results of our approach. Below we show how these formulas may be 
applied. Now we note some interesting consequences of Eq. (3.5). There are 
two factors responsible for the probabilistic nature of the problem under 
study, viz., the disorder related to the arrangements of traps and the 
random Brownian motion of the particle. These factors are represented by 
the two factors in the integrand of Eq. (3.5). In our approach all difficulties 
in solving the problem under consideration are transferred to the problem 
of calculating the probability density F,(v) characterizing the Brownian 
motion of a spherical particle in a space free of traps. 

One should point out that the volume visited by a spherical particle 
whose center moves along the Wiener trajectory (the b vicinity of the 
trajectory) is known in the mathematical literature as the Wiener 
sausage. (24'25) The function F,(v) is therefore the probability density of the 
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Wiener sausage volume. This function, considered as a function of v for 
a fixed t, has a bell-shaped form. In the course of time the position 
of the maximum shifts to infinity, and its width increases. In the limit 
t--*0 the curve tends toward the delta function d(v -vo ) ,  where 
v o = pa/Zba/F(1 + d/2) is the volume of a d-dimensional sphere of radius b. 
An explicit form for the function Ft(v) is known only in one dimen- 
sion. (12'26) The mean value and dispersion of the Wiener sausage volume 
have been calculated for spaces of arbitrary dimensionality. (27) The 
behavior of the function Ft(v) has also been calculated for v much smaller 
than the mean volume./1~ All this information may be used to analyze 
the behavior of the survival probability P(t). 

A comment is in order regarding our general expression for the 
survival probability. The point is that the survival probability as given in 
Eq. (3.5) or (3.9) is a product of two probabilities. (28~ One of them is the 
probability that a particle introduced in the space with traps is not trapped 
initially. This probability is 

P(t -- 0) = exp( - eoVo) (3.11) 

It is the second probability that is the particle survival probability. We 
designate this probability by Psrv(t), where 

Psrv(t) = P(t)/P(O) = exp(cov0) P(t) (3.12) 

In our later discussion we will not distinguish between P(t) and Psrv(t) in 
order to avoid excessive formalism which might confuse the physical inter- 
pretation. If required, the necessary details can be worked out using 
Eq. (3.12). 

4. DISCUSSION OF THE GENERAL EXPRESSION 

We begin by showing that our general expression for the survival 
probability can be reduced to the conventional Smoluchowski solution. To 
do this, it is necessary to neglect fluctuations in volume of the Wiener 
sausage. In this approximation the function F~(v) is 

F~(v) = d(v - ( v ) , )  (4.1) 

where ( v ) t  is the mean Wiener sausage volume at time instant t. In this 
case Eq. (3.5) takes the form 

P(t) = e x p ( -  Co(V)t) (4.2) 
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To convince oneself that exp( -Co(V) , )  is the Smoluchowski solution, 
one needs to use the formal definition of the Wiener sausage volume. In 
order to write this definition, we introduce an auxiliary quantity 
~p(R, [r(t')]), which is a function of point R of a d-dimensional space and 
a functional of the Wiener trajectory r(t') (0 < t' < t), 

~0(R, [r( t , )])  = ~'1 if min I r ( t ' ) -RI  < b  
(4.3) lo if rain I r ( t ' ) - R f  > b  

The definition of the Wiener sausage volume corresponding to the Wiener 
trajectory r(t') (0 < t ' <  t) can be written as 

v([r( t ' ) ] )  = f  q)(R, I-r(t')]) ddR (4.4) 

Having averaged the volume whose expression is Eq. (4.4) over the 
Wiener trajectories, we obtain 

(v>,= (v([r(t')])>t=f <~o(R, [r(t ')])), daR (4.5) 

The quantity <~o(R, [ r ( t ' ) ] ) ,  is the fraction of the trajectories which have 
visited the b vicinity of point R during the time interval (0, t) at least once. 
This quantity is equal to the probability that a point Brownian particle 
will die during a time interval of duration t, when there is a single trap of 
radius b placed at distance R from the particle's starting point. So, 
<~o(R, [r( t ' )]  )t  = q(t[ R) and 

<v ),  = f q(t [ R) ddR (4.6) 

Thus, we obtain the result 

Psm(t) = exp( - Co(V),) (4.7) 

An explicit form of the time dependence of the mean volume in space 
of different dimensionalities was calculated in ref. 27. When r = Dt/b 2 > 1 
these dependences have the form 

<v([r( t ' ) ] )r=2 Vo, d= 1 

4~ 
= Vo, d = 2  

In 

= d ( d -  2) ZVo, d>>- 3 (4.6a) 
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We note that the approximation in Eq. (4.1) is a mean-field 
approximation in the problem under study since it neglects fluctuations in 
the volume of the Wiener sausage. Now we show that this approximation 
leads to a bound on the survival probability estimation from below, i.e., we 
show that 

P(t) > Psm(t) (4.8) 

is satisfied for t > 0. To prove the correctness of the inequality, we rewrite 
it using Eqs. (3.9) and (4.7), 

P ( t ) =  (exp{-cov([r( t ' ) ] )} ) ,>exp(-co(v) t )=Psm(t )  (4.9) 

The validitY of this inequality is a consequence of its being a particular case 
of the more general Jensen inequality, which gives the relationship between 
the mean value of a function of random variable and the value of this 
function when its argument equals the mean value of a random variable. (29) 

The fact that (4.8) is valid at large times is well known. The effect of 
the particle death fluctuation slowdown mentioned earlier (18-22~ is, in fact a 
direct consequence of this result. We calculate the asymptotic survival 
probability in the framework of our approach. Let us introduce the dimen- 
sionless variables u = V/Vo and the trap volume fraction f =  CoVo. In terms 
of this notation Eq. (3.5) takes the form 

P(z) = f exp(-)Cu) F~(yu) du (4.10) 

We define a function L(~) which can be written in terms of P(~) as 

L(~)=  - l n  P(r)  or P(~) = e x p [ - L ( ~ ) ]  (4.11) 

In the course of time the maximum of the function F~(u) shifts toward 
infinity. As a result, the maximum of the integrand in (4.10) is located in 
the small u region defined by u ~  {u)~. At very long times the kinetic 
behavior of the process under consideration is determined by rare fluctua- 
tions in the volume of the Wiener sausage which arise because of fluctua- 
tions in the arrangement of traps. In the regime defined by u ~ {u)~ the 
explicit form of the probability density F~(u) can be written as ~1~ 

F~(u) oc u~au p -Td (4.12) 

where 7d is the square of the first zero of the first-kind Bessel function 
of order ( d - 2 ) / 2 .  If we substitute Eq. (4.12) into Eq. (4.10) and calculate 
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the integral by means of Laplace's method, we arrive at the known 
expression(~O, 11.18 22) 

d + 2 I- /d\  2/d qd/(d+ 2) 

which describes the asymptotic kinetics of particle death. 
To confirm that this death occurs much slower than predicted by the 

Smoluchowski theory, one can compare the time dependence shown in 
Eq. (4.13) with the corresponding result found in the Smoluchowski theory 

Lsm(t ) = --In P s m ( t ) = f ( u ) ,  (4.14) 

For  t >> 1 this dependence has the form 

4ft 
= in t '  d =  2 (4.15) 

= d ( d - 2 ) f t ,  d>~3 

The question of the reduction in trapping rate at early times as com- 
pared to the prediction of Smoluchowski theory is a much more delicate 
one. It has been claimed in the literature that in this stage the particles 
perish faster than predicted by the conventional theory. A detailed discus- 
sion of this point is given in ref. 13. The inequality (4.8) shows that this 
statement is erroneous. To treat this question within the framework of our 
approach, we take advantage of the fact, that, according to Eq. (4.10), the 
survival probability P(t) is the Laplace transformation of the probability 
density F,(u). This allows us to express the L(t) function as a power series 
in f: 

- i f  )JKj( t ) L(t) - In P(t) = ( (4.16) 
j = l  

The coefficients Kj(t) in this power series are cumulants of the volume of 
the Wiener sausage. 

If we approximate the series in Eq. (4.16) by its first term, we get 
the original Smoluchowski approximation, since Kl(t) = (u) , .  Such an 
approximation is correct for f<~ 1 as long as the time is not too large. At 
sufficiently short times the second term of the series in Eq. (4.16) gives the 
next-order correction to the Smoluchowski solution. To make sure that the 
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correction reflects the particle death slowdown, we n o t e  that the first and 
second terms have different signs, since K2(t)= a2(t) is the variance of the 
Wiener sausage volume and is therefore positive. Thus, in this approxima- 
tion the survival probability has the form 

P(t) ~- Psm(t) exp[�89 (4.17) 

An explicit form of the Wiener sausage volume dispersion time dependence 
was calculated in ref. 27. This is 

4 
K2(t) = in 4 - - ,  d = 1 

P 

t 2 
= b2 in 4 t '  d = 2 

(4.18) 
= 9 t l n  t, d = 3  

= bat, d> 3 

where ba denotes a constant (b2 ~- 27.18). 
Thus, starting with the general expression for the survival probability 

in which the many-body effects are taken into account, we find the 
following results: (a) The one-body Smoluchowski solution. (b) An 
inequality that shows that the Smoluchowski solution is a lower bound for 
the survival probability for the more general case of many traps. (c) The 
asymptotics of the survival probability in the limit t--, oo. (d) The 
correction to the Smoluchowski solution, which accounts for the initial 
slowdown in trapping rate. 

5. S T E A D Y - S T A T E  R A T E  C O N S T A N T  

So far, we have discussed the time dependence of the particle survival 
probability P(t). In the present section we shall consider the so-called 
steady-state rate constant Ks~, which is related to the survival probability 
by the equation 

fo K ~  1 -= P(t) dt (5.1) 

It should be noted that Kss i is a mean particle lifetime h derived from the 
definition 

f I d (t)ld, j 
h=oo t at (5.2) 

Evaluating the integral by parts, one sees that h = K~I. 
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The steady-state rate constant characterizes the particle death rate in 
the case when particle generation takes place at the same time as one has 
particle death due to trapping. After a fairly large time, a steady-state 
concentration is attained, which is to say that the number of particles 
perishing on traps per unit time equals the number of new particles arising 
due to generation. If new particles are generated uniformly in space, 
then the generation intensity I and the steady-state concentration % are 
connected by the relationship (5) 

I=Ks~c~s (5.3) 

where the product Ks~% is the trapping rate of particles. 
The steady-state rate constant depends on the trap concentration or, 

equivalently, on the volume fraction of traps f =  Coy o. There has been some 
confusion concerning the relation between the rate coefficients Ks~ and K(t) 
in a number of papers. To clarify the situation, following ref. 5, we shall 
discuss this point in greater detail. We restrict ourselves to a consideration 
of the three-dimensional case only, since it is mainly in this case that 
calculations of Kss have been made. 

We start by considering the results given by the original 
Smoluchowski theory: 

b 
Ksm(t)=4pbDco[l § (pl~t)l/2] (5.4) 

This rate coefficient approaches the limiting value 4pbDco on a time scale 
that exceeds the characteristic time of diffusional passage through a trap, 
b2/D. 

On the other hand, the substitution of the Smoluchowski solution 
Psm(t) into the integral in Eq. (5.1) gives the result (5) 

K~s, sm=Ksm(OO)[l_(3f)l/2exp(3f/rc)erfc((3f/r@/2)] 1 (5.5) 

where erfc(z)= (2/1) 1/2) ~z ~176 e x p ( - x  2) dx is the complementary error func- 
tion. (31) When f , ~  1, Eq. (5.5) can be approximated by (5) 

Kss'sm= Ksm( ~ ) [ l + (3f)l/2-{- 3 (1--2)  f +  ""1 (5.6) 

It is worth emphasizing that the Smoluchowski steady-state rate constant 
Kss, sm(f) is larger than the rate constant Ksm(OO) found from Eq. (5.4). We 
note that both this fact and the mentioned dependence of the steady-state 
rate constant of f stem from the fact that very early times Ksm(t ) differs 
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significantly from Ksm(~ ) make a noticeable contribution to the integral in 
Eq. (5.1). From the definition of steady-state rate constant in Eq. (5.1) and 
the inequality in Eq. (4.8) one finds that 

Kss.sm(f) > Kss(f) (5.7) 

There are a number of papers that analyze the dependence of Ks~ on 
the parameter f. A more detailed bibliography can be found in refs. 5, 6, 
and 32. Most authors, in calculating Kss(f) taking into account many-body 
effects, avoid the straightforward procedure involving the calculation of 
P(t) and the integral indicated in Eq. (5.1). Instead, the Laplace transform 
of the survival probability is introduced 

;o ;f /5(s) = exp ( - s t )  P(t) dt = e x p ( -  ts) (G~(r, t)) dt dar (5.8) 

which allows one to express the steady-state rate constant as 

Kss = [P(s = 0)] 1 (5.9) 

A number of approximate methods can be used to calculate/3(s) using this 
formalism. A critical discussion of the functional form of the f dependence 
of Kss(f) can be found in ref. 32. The authors of that reference state that 
only three first terms of the K~(f)  expansion with f ~  1 can be found 
correctly, 

K~s(f) ~- Ksm( ct3 )[1 + (3f)1/2 + 3 f In 3f]  (5.10) 

We note that the two first terms in the square brackets correspond to the 
Smoluchowski solution [see Eq. (5.6)] and only the last term relates to 
many-body effects. 

The f dependence of Ks~(f) can be calculated quite straightforwardly 
by making use of Eq. (5.1). The approximate expression for P(t) given in 
Eq. (4.17) is used in the simplified form 

P(t) = Psm(t) [ 1 + �89 fZK2(t)] (5.11 ) 

Such a simplification is valid, since the main contribution to integral in 
Eq. (5.1) is made at small times, where the product f2Kz(t ) is small 
compared to unity. Our analysis confirms Eq. (5.10). It should be noted 
that the second term in the square brackets in Eq. (5.11) accounts for 
many-body effects neglected in the Smoluchowski theory. It is just this term 
which is responsible for the last term in the square brackets in Eq. (5.10). 
When f , ~  1, this term is negative and hence K~s(f ) as given in Eq. (5.10) 
satisfies the inequality (5.7). 
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To summarize this section, we note that the nontrivial dependence of 
the steady-state rate constant on the trap concentration arises even within 
the framework of the Smoluchowski theory which neglects the many-body 
effects. (5) The real value of K~(f) is always smaller than Kss.sm(f). When 
f ,~  1 the leading terms in the expansion of Kss(f) taking many-body effects 
into account are given by Eq. (5.10). 

6. C O N C L U D I N G  R E M A R K S  

The approach discussed above can be generalized to encompass many 
variations of the trapping problem. These follow from the generalization of 
each of two multipliers in the integrand in Eq. (3.5). For example, when the 
particle is charged and its Brownian motion occurs in an external electric 
field, one needs to modify the Wiener sausage volume probability density 
F,(v) in Eq. (3.5). A similar modification is required in the case of the 
anisotropic Brownian motion, which takes place in quasi-one-dimensional 
and layered materials. On the other hand, when the distribution of the 
number of traps in a given volume differs from the Poisson, then the first 
multiplier in the integrand in Eq. (3.5) must be modified. One can show 
that trap repulsion leads to a decrease in the particle survival probability, 
since it decreases the probability of finding the volume v free of traps. In 
contrast, an increase in trap attraction leads to an increase in the 
probability of finding the volume v free of traps and therefore to an 
increase in the survival probability. (34) It should be noted that the expres- 
sion in Eq. (3.5) for the survival probability is not correct in general, since 
the survival probability of a particle moving along a Wiener trajectory 
depends not only on the Wiener sausage volume corresponding to this 
trajectory, but also on the Wiener sausage shape and attitude. 

Now let us touch briefly on one more question related to many-body 
effects in diffusion-limited kinetics. So far we have considered the Brownian 
particle death on static traps and have discussed the deviations from the 
Smoluchowski theory predictions due to many-body effects, which are 
ignored in the Smoluchowski theory. At the same time, the Smoluchowski 
theory gives the exact solution of the problem of static particle death as a 
result of its collision with one of the moveable traps. (5'1~ 

Within the framework of the Smoluchowski theory there is no 
difference between these cases (the trapping and target problems), since 
only the total diffusion coefficient given in Eq. (2.1) appears in later 
formulas. In this connection, a very interesting problem arises related to 
the many-body effect on the reaction rate in the course of transition from 
the trapping to the target problem. In other words, this is a question of 
many-body effects with arbitrary mobility of both particles and traps. The 
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first steps in this direction were made in recent papers, (35 37) where the 
influence of trap mobility on the particle death fluctuation slowdown was 
analyzed. However, this set of questions generally remains open for further 
investigation. In conclusion, we note that though some progress has been 
achieved in constructing a diffusion-limited reaction theory taking many- 
body effects into account, there remairl many unsolved problems in this 
area awaiting further investigation. 
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